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The aim of this research was to investigate whether the chemical changes induced by mechanical

damage and aging of mushrooms can be (a) detected in the midinfrared absorption region and (b)

identified using chemometric data analysis. Mushrooms grown under controlled conditions were

bruise-damaged by vibration to simulate damage during normal transportation. Damaged and

nondamaged mushrooms were stored for up to 7 days postharvest. Principal component analysis

of Fourier transform infrared (FTIR) spectra showed evidence that physical damage had an effect on

the tissue structure and the aging process. Random forest classification models were used to

predict damage in mushrooms producing models with error rates of 5.9 and 9.8% with specific

wavenumbers identified as important variables for identifying damage, and partial least-squares

(PLS) models were developed producing models with low levels of misclassification. Modeling

postharvest age in mushrooms using random forests and PLS resulted in high error rates and

misclassification; however, random forest models had the ability to correctly classify 82% of day

zero samples, which may be a useful tool in discriminating between “fresh” and old mushrooms.

This study highlights the usefulness of FTIR spectroscopy coupled with chemometric data analysis

in particular for evaluating damage in mushrooms and with the possibility of developing a monitoring

system for damaged mushrooms using the FTIR “fingerprint” region.
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INTRODUCTION

Mushroom cultivation is a worldwide business, with the global
market valued at over $45 billion in 2005 (1). In Ireland, more
than 60000 tons of button mushrooms (Agaricus bisporus) are
produced annually, making them one of the most important
horticultural crops grown (2). Mushrooms are one of the most
perishable food products with a maximum shelf life of 3-4 days
at ambient temperature (3), mainly because they have no cuticle
to offer protection from physical damage, microbial attack, or
water loss (4). They may be bruised easily by physical stress
during harvesting, handling, and transportation. Thismechanical
damage triggers a browning process, which is the major cause of
loss of value in the market (5, 6). A second significant factor
determining mushroom quality is the time elapsed between
harvesting and delivery to the marketplace. Postharvest age is
particularly important for any mushroom exporting country
(i.e., Ireland) for which access to the food markets in larger,
neighboring countries within Europe is vital. There is a need for a
method that would allow objective evaluation of mushroom

quality to ensure that only high-quality produce reaches the retail
market and that is able to produce informationon themetabolites
in mushrooms affected by senescence and damage (7).

Fourier transform infrared (FTIR) spectroscopy is an analy-
tical technique that enables the rapid, reagentless, and high-
throughput analysis of a diverse range of samples (8). Its
importance lies in its ability to allow rapid and simultaneous
characterization of different functional groups such as lipids,
proteins, nucleic acids, and polysaccharides (9-12) in biological
molecules and complex structures. FTIR spectroscopy is an
important tool used for quality control and process monitoring
in the food industry because it is less expensive, has better
performance, and is easier to use than other methods (13). In
the same way, FTIR spectroscopy has been used as a fingerprint-
ing tool to study the response of cells to various stressing
situations (14-16).

A key to the successful operation of this technique is the
availability of mathematical tools for the interrogation and
mining of large spectral data sets. Principal component analysis
(PCA), partial least-squares (PLS) regression, and randomforests
(RFs) are chemometric tools that have been successfully used to
extract information from FTIR data (17, 18).
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The objective of this study was to investigate the damage and
aging of mushrooms grown in Ireland using FTIR spectroscopy
to (a) differentiate between damaged and undamaged mush-
rooms and (b) determine mushroom postharvest age. The ability
to develop a tool that could detect physical damage before
browning becomes visible would be of importance to the mush-
room industry and could reduce economic losses.

MATERIALS AND METHODS

Mushrooms. Second flush mushrooms were grown at the Teagasc
Research Centre Kinsealy (Dublin, Ireland), harvested damage-free. A set
of 160 closed-cap, defect-freeA. bisporus strain SylvanA15 (Sylvan Spawn
Ltd., Peterborough,UnitedKingdom)mushrooms (3-5 cmcap diameter)
were selected for this study and immediately transported by road to the
testing laboratory. Special trays were designed to hold mushrooms by the
stem using a metal grid to avoid contact between (a) the mushrooms and
(b) the tops of mushroom caps and the tray lid during transportation.
Mushrooms arrived at the laboratory premises within 1 h after harvesting
and were either damaged for the specified time length or remained
damage-free and then stored at 4 �C until required for analysis.

MushroomTreatments.Mushrooms (n=160) were harvested in the
conventional manner on a single occasion. On the day of harvest, a subset
(n = 80) was subjected to physical damage using a mechanical shaker
(GyrotoryG2,NewBrunswickScientificCo.,UnitedStates) set at 300 rpm
(rotations per minute) for 20 min; these samples were labeled as damaged
(D). The remaining 80mushroomswere untreated and labeled undamaged
(UD). Ten damaged and ten undamaged mushrooms were selected at
random from their respective subsets on the day of harvesting and pre-
pared for spectroscopic analysis (see below); these are referred to as day 0
samples. The remainder of the mushrooms (70 each of damaged and
undamaged) was placed inplastic punnets (sixmushroomsper punnet) and
stored as separate batches at 4 �C in a controlled temperature facility. On
each of seven consecutive days of such storage, a set of 10 damaged and 10
undamaged mushrooms were randomly selected, removed from storage,
and prepared for FTIR analysis.

FTIR Spectroscopy. Sample preparation involved the manual dis-
section of each mushroom into its three main tissue types (cap, gills, and
stalk) before freezing overnight at -70 �C in a cryogenic refrigerator
(Polar 340 V, Angelantoni Industrie spA,MassaMartana, Italy) followed
by freeze-drying (Micromodulyo, ECApparatus Inc., NewYork) for 24 h.
Freeze-dried samples were manually ground into fine particles using a
pestle and mortar. Then, 9 mg (3% w/w) of each sample was mixed with
291 mg (97% w/w) of KBr (Sigma Aldrich, Dublin, Ireland). KBr pellets
were prepared by exerting pressure of 100 kg/cm2 (1200 psi) for approxi-
mately 2min in a pellet press (Specac, UnitedKingdom). To eliminate any
interference that might be caused by variation in pellet thickness, different
pellets were prepared from the same sample, and their infrared spectra
were compared. These samples were identical with their average spectra
used for analysis (19).

Spectrawere collected using aNicolet Avatar 360 FTIRE.S.P (Thermo
Scientific, Waltham, MA) over the frequency range 400-4000 cm-1. One
hundred scans of each pellet was collected at 4 cm-1 resolution at room
temperature using OMNIC software (version ESP 5.1). The average of the
100 scans was used for further data analysis. FTIR spectral data were
discretized resulting in spectra containing 1868 individual points
(discretized every 2 cm-1) for chemometric analysis.

Chemometric Data Analyses. Multivariate models for damage and
age prediction in mushrooms using both raw (i.e., unmodified) and
pretreated spectral data were developed; the pretreatment used was
standard normal variate (SNV) and was intended to reduce scatter-
induced effects in the spectra (20). The frequency region studied was
400-2000 cm-1 (fingerprint region); this spectral range encompasses
absorptions from most of the chemical species present, and attenuation
of the data set in this way avoids spectral regions that have low
information content and may therefore interfere with effective model
development.

RF modeling achieves a classification by constructing a series of
decision trees (21) and takes input variables down all trees to optimize
classification. Each tree is constructed using a different bootstrap sample
from the original data, and about one-third of the cases are left out of the

bootstrap sample and are not used in the construction of the k-th tree.
These sets of unseen samples are called out-of-bag (OOB) sets. RF makes
use of these OOB sets in many ways, in particular to give an unbiased
estimate of the prediction error on unseen cases (22).

RF models were built to (a) discriminate between damaged and
undamaged mushrooms and (b) predict mushroom ages. The number of
trees fitted to build theRFwas 1000, the number of randomwavenumbers
tried at every node of the treewas set at 500 after optimization, and theRF
model trained was made using a stratified random sampling strategy of
the sample spectra that would take the same number of samples from each
of the tissues. PCA was used to identify patterns in data in a way that
emphasizes differences and similarities. It is used to indicate relationships
among groups of variables in a data set and show relationships that might
exist between objects (23).

PLS regression was applied to the spectral data sets to develop a
quantitative model for prediction of the age of damaged mushrooms. A
common problem in development of multivariate prediction models is
selection of the optimum number of PLS loadings; often, this selection is
based onan examination of the root-mean-square error of cross-validation
(RMSECV), but identification of a minimum is not always possible or
unambiguous, and suboptimal models incur a significant risk of over-
fitting. Experience has shown that this can be a problem when parameters
that are of practical relevance, such as postharvest age or damage, but have
unclear molecular basis are being modeled. To avoid overfitting, model
cross-validation was employed as follows:

1. Samples were randomly designated from each tissue/damage
status/time grouping as calibration (60%) or validation (40%)
samples. The validation subset was left completely out during
the optimization of model based on the calibration set.

2. The model optimization step was carried out to estimate the
optimal dimensionality of the PLS model built on the calibra-
tion set. The method employed for this was based on the obser-
vation that an indication of overfitting is the appearance of
noise in regression vectors; this takes the form of a reduction in
apparent structure and the presence of sharp peaks with a high
degree of directional oscillation. A simple method (24) for
objectivity quantifying the shape of a regression vector, com-
bined with the RMSECV for the calibration set, was applied in
this study.

3. The random sample designation, model development, and
evaluation were performed 100 times. At the end of this cycle,
models were initially examined on the basis of the number of
latent variables selected, and the most common number was
then chosen as the optimum.

Mushroom discrimination (damaged versus undamaged) was per-
formed using PLS discrimination analysis (PLS-DA). For PLS-DA, a
dummy Y-variable was assigned to each mushroom tissue sample: 1 for
damaged and 0 for undamaged. PLS-DA calibration models were devel-
oped and assessed using 100 randomly populated calibration and valida-
tion sample sets.

PCA and PLS regression were performed using MATLAB and The
Unscrambler software (v.9.7; Camo A/S, Oslo, Norway). The routine for
selection of the optimum number of PLS loadings was also performed in
MATLAB. RF modeling was performed using R 2.8.0 (25).

RESULTS AND DISCUSSION

Spectral Data. Average raw spectra of each of the three tissue
types collected from all of the damaged and undamaged samples
(days 0-7 in each case) are shown in Figure 1a-c. A number of
observations may be made on these spectra. First, the major
feature is a vertical offset from one average plot to another; this
offset originates in light scatter effects andmay be a complication
in further data analysis. Average spectra of the three tissue types
also bear a close resemblance to each other; there is little visible
difference in peak minima locations in Figure 1. In terms of
minima locations, there are major bands at 1650, 1090, 1020, and
935 cm-1;minorminimamaybe seen at 1560, 1150, and1050 cm-1

(Figure 2). Unambiguous identification of the molecular source of
features in midinfrared spectra of biological material is difficult,
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but the peak at 1650 may be attributed to an amide I group, while
at 1560 cm-1, it may be identified as resulting from amide II
groups (26,27).Bothmajorabsorbancepeaksat 1090and1020cm-1

have been attributed as structures in chitin, a major structural
polysaccharide in mushrooms; absorbance at 1090 cm-1 may
also arise from secondary alcohols. Smaller features at 1150 and
1050 cm-1 have been attributed to tertiary and primary alcohol
structures (28). Minima at 935, 890, and 874 cm-1 bands corres-
pond to R- or β-anomer C1-H deformations. The bands at 935
and 890 cm-1 are attributed to glucan bands, while the band at
874 cm-1 is assigned to a mannan band (29-31). An inability to
attribute all spectral features is a common feature of spectros-
copy of complex biological matrices, but the presence of such
spectral detail implies the detection of a significant quantity of
information, whichmay be usefully interrogated bymultivariate
mathematical methods.

PCA.Undamaged sampleswere studied separately on the basis
of their tissue type, that is, caps, gills, and stalks. The initial PCA

of the mushroom caps data revealed a single sample (day 7) that
lay anomalously at some significant distance from the others; this
was deleted, and the resulting score plot is shown in Figure 3 for
PC1 vs PC2; these first two principal components accounted for
97 and 2%, respectively, of the total variance in the spectral data
set, and some sample clustering on the basis of storage time is
readily apparent. As a general observation, it may be stated that
the majority of the day 0 mushroom caps have a score value on
PC1 greater than zero and are therefore located on the right-hand
side of Figure 3a. While there are indications that samples of
different storage time cluster together, the spread of these clusters
is quite large, and it is not possible to readily discern any trend
relating plot position and storage time in the plots. There is a
suggestion that the dispersion of the samples decreases as the
length of storage time increases. With regard to undamaged gill
tissue, observations similar to those made above in relation to
undamaged capsmay bemade, although the distribution patterns
are somewhat different.

In the case of damaged mushroom tissues, a different pattern
was found. It is clear from Figure 3d-f that day 0 samples
clustered together but separately from those of day 1 to day 7
samples, irrespective of tissue type. This strongly suggested that
physical damage had a significant effect on tissue structure and
the subsequent aging process. Some implications regarding the
rate of change of mushroom tissue composition with aging may
be garnered from the observation that separationof day 0 fromall
other subsequent days accounts for the most variation in the
spectral collection of damaged mushroom caps, gills, and stalks.

Examination of PC loadings may provide information on the
absorbing species, which are involved in separations observed on
a PC scores plot; however, meaningful interpretation of loadings
arising from this data set (data not shown) was not possible.

Detection of Damage (RFs). The first RF model developed
attempted to identify which wavenumbers could be used to
predict damage specifically. The model tried to predict damage
in mushrooms using the IR spectra, a variable indicating the
tissue from which the spectra originated (cap, gill, or stalk) and
the age of the mushroom (in days from 0 to 7) as explanatory
variables. This resulted in good classification between damaged
and undamaged samples with an OOB error rate of 5.9%,
sensitivity of 93.3%, and specificity of 95%.

In RFs, there are two measures of importance to indicate how
informative a particular variable (a wavenumber in our case) is,
themean decrease in accuracy and theGini index. The decrease in
Gini index is not as reliable as the marginal decrease in accu-
racy (32, 33), and for that reason, the latter was analyzed. The
variables containing the most importance for predicting damage
in the model are shown inFigure 4a. Themost important variable
for predicting damagewas the age of themushrooms, followed by
the wavenumbers 1868, 1870, and 1845 cm-1.

Induced damage in mushrooms leads to an enzymic response,
which is followed by brown discoloration. The enzymes involved
in this response, tyrosinase or polyphenol oxidases, catalyze the
oxidation of phenols, which in turn promote the formation of
melanin-like compounds. This reaction is found not only in
damagedmushrooms but is also part of the natural aging process,
with the color in mushrooms becoming darker and less firm
during storage (34). The three wavenumbers identified have the
ability to differentiate between the chemical changes that are
induced by the mechanical damage and are independent of those
that take place due solely to aging. The three wavenumbers
identified above are unassigned peaks.

By removing the variable age from the model, a second model
was built that took IR spectra of mushrooms (independently of
their age) and tried to predict whether there was damage or not.

Figure 1. FTIR transmittance spectra of all mushroom tissues in (a) 400-
1800, (b) 2800-3050, and (c) 3050-4000 cm-1 wavenumber ranges.

Figure 2. Average undamaged caps spectrum (raw data).
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This RF could be used as a classifier of mushroom damage and
gave a very good prediction model with an OOB error rate of
9.8%, sensitivity of 89.2%, and specificity of 91.2%. Even receiv-
ing mushrooms whose storage time after harvest was unknown,
the model would still classify damaged and undamaged mush-
room sampleswith a very good classification rate.The variables of
importance involved in this classification model are shown in
Figure 4b.

The most important variable for predicting damage according
to the mean decrease accuracy plot is tissue used in the analysis
followed by the wavenumbers 1868, 1870, and 1560 cm-1. The
peak at 1560 cm-1 is attributed to amide II vibrations of
proteins (29). Amide II bands along with amide I bands are
major regions of the protein infrared spectrum. Amide II bands
are associated with an out-of-phase combination of in-plane

C-N stretching and N-H bending of amide groups (35). Ab-
sorption of this band was found to be higher in damaged samples
and therefore an important variable for detecting damage in
mushroom samples. The wavenumbers 1868 and 1870 cm-1 are
unassigned.

Detection of Damage (PLS). PLS-DA models were developed
to discriminate between undamaged and damagedmushrooms of
all tissue types separately. A summary of the average and
dispersion of the results obtained on a percentage basis for each
tissue is shown in Table 1; it is apparent that misclassification
errors associated with all models were low, especially so in the
case of gills and stalks. In terms of numbers of samples mis-
classified, these percentages translate to 1 or 2 only in each case.
These results indicate that FTIR of freeze-dried mushroom
tissues (especially gills and stalks) may be used to discriminate

Figure 3. PC1 vs PC2 score plots of undamaged mushroom tissue (a) caps, (b) gills, and (c) stalks and damaged tissue (d) caps, (e) gills, and (f) stalks;
0-7, sample ages from zero to seven.
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between damaged and undamaged mushrooms aged postharvest
from 0 to 7 days with almost complete confidence.

Modeling damage in mushrooms has been reported in the
literature in 2008 by Gowen and colleagues and in 2009 by
Esquerre et al. (36, 37). Gowen and colleagues investigated the
use of hyperspectral imaging and PCA to develop models to
predict damage on mushroom caps with correct classification
ranging from 79 to 100%. Using near-infrared spectroscopy and
PLS regression, Esquerre and colleagues were able to correctly
classify undamaged mushrooms from damaged ones with an
overall correct classification model with 99% accuracy. The
models for predicting damage using FTIR and RFs correctly
classified 94 and 90% of samples, respectively, while the PLS
predictive models correctly classified 92-99% of undamaged
samples from damaged ones. These results highlight the useful-
ness of FTIR and chemometrics for detecting physical damage in
mushrooms with the possibility of developing a classification
system for the industry.

Predicting Postharvest Age (RFs). Initial RF models were built
to try and predict the mushroom age from day zero to day seven
(0-7) using the IR spectra from the tissues and knowing whether
they had been subjected to damage or not with the aim to identify
specific wavenumbers associated with aging. The RF model
produced an OOB error rate of 32%, that is, 68% of samples
were correctly classified. The results of the model fit are shown in
Table 2. Misclassification of samples was seen for all mushroom
ages, particularly days 4, 5, and 7. Classification of day zero
samples performed quite well in the model with 82% of samples
correctly classified, which leads to the possibility of using IR

spectroscopy as a tool to discriminate fresh mushrooms (D0)
from mushrooms that have been subjected to refrigeration. This
type of tool could enable packers and producers to avoid fraud
and “recycling” of product, supporting the evidence from visual
inspection. The variables of importance identified by the mean
decrease accuracy plot were damage, tissue type, and the wave-
numbers 399, 952, and 1508 cm-1.

A second model was developed to predict age using the same
approach as above but removing the damage variable from the
model. The model performed much the same as above with an
OOB error rate of 33%; again, misclassification within all sample
ages was seen. The model correctly classified 79% of day zero
models. The important variables identified to predict age were
tissue type and the wavenumbers 399, 952, and 1508 cm-1. The
peak at 952 cm-1 is a glucan band (β-anomer C-H defor-
mation) (29); glucans play many different roles in the physiology
of fungi: Some accumulate in the cytoplasm as storage; however,
most are present in the cell wall structure (38). This suggests that
the ability tomodel aging inmushroomsmaydependon the affect
of glucan levels changing in the cellwall due to natural senescence.
The wavenumbers at 399 and 1508 cm-1 are unassigned. The
OOB errors produced to model aging were quite large >33%,
which may be due to the low sample numbers.

Predicting Postharvest Age (PLS). PLS regression was applied
separately to the caps, gills, and stalks data sets in an attempt to
develop separate quantitative models for prediction of the age
of mushrooms, both damaged and undamaged. Selection of the
appropriate number of latent variables for each model was
assessed on the basis of the frequency of their occurrence. As
shown in Figure 5, this was a clear and unambiguous choice. A
summary of the results obtained using mushrooms from day 0
to day 7 inclusive is shown in Table 3. In the case of undamaged
mushrooms, RMSECVvalues achievedwere relatively high, only
permitting the prediction of postharvest age of damaged mush-
rooms to within (2-3 days approximately (95% confidence
limit), depending on tissue type. The practical utility of such accu-
racy levels may be gauged by examination of the SD/RMSECV
ratio, all but one of which are below 3.0, the generally accepted
minimum value for a model to be of practical utility. With regard
to damagedmushrooms,model predictive accuracieswere similar
for caps and stalks with RMSECV (and RER) values of 1.3 (1.9)
and 1.2 (2.0), respectively. In the case of gill tissue, better pre-
dictive accuracy was achieved with RMSECV and RER values
equal to 0.8 and 3.1, respectively. The number of latent variables
associatedwith thesemodels was low and similar in all cases, with
a variation between 6 and 8 only. The application of an objective
indicator of the optimum number of PLS loadings to include in
any model contributed to their stable performance.

The results presented for modeling age in mushrooms using
FTIRand chemometrics hadmisclassification errors of over 30%

Figure 4. (a)Relative importance plot of variables that are important in the
RF model for predicting damage/undamaged samples. The variable age
is the most important followed by the wavenumbers 1868, 1870, and
1845 cm-1. (b) Relative importance plot of variables that are important in
the RF model for predicting damaged/undamaged samples when age is
not a variable. The most important variables are tissue type followed by the
wavenumbers 1868, 1870, and 1560 cm-1.

Table 1. Summary of Results for Mushroom Discrimination on the Basis of
Damage

no. of

samples

no. of

loadings

% undamaged misclassified

mean (SD)

% damaged misclassified

mean (SD)

caps 160 7 4.1 (4.3) 7.6 (4.0)

gills 160 9 2.1 (3.0) 0.8 (1.7)

stalks 160 12 1.7 (2.1) 0.6 (1.5)

Table 2. Confusion Matrix and the Error Rate for the Prediction of Mushroom
Agea

0 1 2 3 4 5 6 7 error rate

0 49 3 0 3 2 0 3 2 0.18

1 1 42 2 4 0 1 4 6 0.30

2 4 5 43 2 3 0 0 3 0.28

3 1 3 5 47 2 1 0 1 0.22

4 3 0 3 3 32 2 8 9 0.47

5 0 0 3 12 3 29 4 8 0.51

6 1 0 6 0 2 0 48 3 0.20

7 2 1 5 2 2 6 8 34 0.43

a The OOB error rate is 32%. The highlighted numbers are correctly classified
samples. 0-7: Sample age in days from day zero to day seven. Error rate: The %
misclassification for each sample age.
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(RFs), yielding relatively unsuccessful results. However, RF
models were able to classify day zero samples reasonably well
with correct classifications of 82 and 79%, which leads to the
possibility of using IR spectroscopy in detecting freshmushrooms
from old mushrooms and could be used within the sector for
detecting fraud and “recycling” of product. The time required for
freeze-dried sample preparation and measurement in this proto-
col is in the order of hours; thus, this approach would be
applicable for research and quality control purposes. However,
this may be reduced to the order of minutes by the use of specific
wavenumbers, possibly raw mushroom tissue and alternative IR
sample handling (i.e., attenuated total reflectance).
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Table 3. Summary of PLS Regression Results for the Prediction of Post-
harvest Age (Day 0-7 Inclusive) in Undamaged and Damaged Mushrooms

treatment tissue no. of samples no. of loadings RMSECVa RERb
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